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Abstract 
Nowadays the most reliable approach to estimate the kinetic parameters is to minimize an 

objective function which is essentially the distance between the measured data and the 

model generated pseudo data. Due to the highly non-linear nature of the model, common 

optimization algorithms usually fail to find the true minimum. A brute-force search 

method sometimes must be used to find the true minimum. This paper attempts to use the 

Laplace transform and Z-transform methods to derive closed-form formulas for kinetic 

parameter estimation problems, which assume one- or two-compartment models. The 

proposed method is computationally efficient and its solution is unique. When data 

sampling interval is small, the proposed method is able to accurately estimate the kinetic 

parameter; when the interval is larger, the proposed method fails to give a meaningful 

estimate. The one-compartment method is more robust than the two-compartment method. 

 

 



I. Introduction 

Here we use a one-compartment model (see Fig. 1) with two kinetic parameters, 

K1 and k2, to review some current methods in kinetic parameter estimation. The one-

compartment model can be mathematically described as a first-order differential equation: 
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where B(t) is the given input function and C(t) is the measured data.  

 

 

 
 

 

 

Figure 1. A general single-tissue-compartmental-model.  

 

If we solve the differential equation (1) for C(t), we obtain 
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Expression (2) is commonly used to estimate K1 and k2 by non-linear fitting methods by 

minimizing the objective function: 
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Currently this approach is the most reliable one [1]-[3]. However, in a two-compartment 

model or multi-compartment model, the objective function is highly non-linear. It is 

difficult to use a common optimization algorithm to search for its true minimum. A brute-

force search sometimes is the only reliable method to find the true minimum, but a brute-

force search can be time consuming in some large data set applications. It will have a 

significant impact if an efficient, closed-form solution available for a multi-compartment 

model kinetic parameter estimation problem. 

 To find a closed-form solution using a computer needs to convert the original 

differential equation into an algebraic equation or a difference equation, because one 

cannot directly implement dC(t)/dt without any approximation. 

One way to solve for K1 and k2 is to discretize (1) as, 
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 where is T is a sampling interval. The approximation in (4), 
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is rather poor for practical sampling interval T and thus the resultant estimation of K1 and 

k2 contains large errors.  

Another approach is to integrate the both sides of (1), and this yields 
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Notice that ∫
t

dC
0

)( ττ  is the image value reconstructed with all projections acquired in time 

interval [0, t] and C(t) is the image value reconstructed with projections acquired at time 

instant t . In practice, it is not realistic to obtain C(t). The numeric calculation of ∫
t

dB
0

)( ττ  

may introduce a large error over such a large time interval if the analytical form of B(t) is 

not known. Some modern kinetic parameter estimation methods [4]-[6] are based on the 

linear model (6).  

 As a pre-view, a main result in this paper is to transform the differential equation 

(1) into a difference equation: 
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where gdc is the DC gain from B(t) to C(t) and K1 = gdc k2. Equation (7) is obtained by 

using a bilinear transformation that relates the Laplace transform to the Z-transform. This 

approach is more accurate than the approximation in (5). In (7), the values C and B can 

be the instant values and can also be integrated values over a time interval.  

The relationship between the continuous-time signal’s Laplace transform with the 

variable s and the discrete-time signal’s Z-transform with the variable z is essentially z = 

e
sT

 where T is the sampling interval. In the Laplace domain, s corresponds to the 

derivative operator in the time domain. In the z domain, z
-1

 corresponds to the unit delay 

in the time domain. In order to see that the bilinear transformation is a more accurate 

approximation than (5), let us compare the following three Taylor expansions: 
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Equation (8) is the exact Taylor expansion of e
-sT

, equation (9), which implies the 

transformation Tzs /)1( 1−−= , is equivalent to (5), and equation (10) is equivalent to the 

bilinear transformation, )1/()1)(/2( 11 −− +−= zzTs , that will be used in this paper to 

derive closed-form formulas for kinetic parameter estimation. Clearly, (10) is more 

accurate than (9) to approximate (9).



II. Derivation of the closed-form formulas 

 

Figures 1 and 2 show generic one and two compartment models, respectively. The 

circle in the figures represents the input function, and the squares represent the 

compartments in the tissue. The single compartment model in Fig. 1 has only one 

compartment in tissue and exchanges tracer between plasma compartment B(t) and tissue 

compartment C(t) by two rate constants K1 and k2. The two-compartment model of the 

tissue in Fig. 2 has four rate constants: K1, k2, k3 and k4. In the following, we will develop 

some mathematical formulas for these two models, respectively. 

II. A. One-compartment model formulas 

The differential equation for the one-compartment model can be written as 
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Taking the Laplace transform of this equation, we have 
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which immediately gives the transfer function )(
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sH  of the system as 
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Letting s=0 yields the DC gain of the system 
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In practice, the DC gain gdc can be readily obtained as the ratio of the total sum (i.e., 

integral) of the function C(t) over the total sum (i.e., integral) of the function B(t). 

When measurements are processed in a computer, a continuous-time system 

needs to be approximated by a discrete-time system. One way of performing this 

conversion is via the Laplace transform to Z-transform conversion. The relationship 

between s and z is given as 
sTez =         (15) 

where T is the sampling interval. From (15), s can be expressed by z as 
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The bilinear transformation  
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is popular in the field of digital signal processing, because it transforms a rational transfer 

function in the Laplace domain into a rational transfer function in the Z-domain. As seen 

in (16), when the sampling interval T is small, a continuous-time system can be 

accurately approximated by its discrete-time counterpart via the bilinear transformation. 

However, when T is large, the approximation is poor. 

 Using the bilinear transformation (17), the continuous-time system (13) is 

transformed into 
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Combining (14) and (18) yields 
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Taking the inverse Z-transform and realizing that z
-1

 means a delay of T, we obtain a 

time-domain expression: 
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with t now taking discrete values and 
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Calculating dot products with )(tE  on both sides of (20) gives 
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Finally, the estimated kinetic parameters are obtained with the closed-form expressions 
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II. B. Two-compartment model formulas 

Two differential equations for the two-compartment model can be written as 
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Figure 2. A general two-tissue-compartmental-model. 

 

The above two equations are referred to as the state equations in system theory. The 

compartments C1(t) and C2(t) are not accessible; however, the sum of them, C(t) defined 

as  

K1 

 

k2 

 

C2(t) 

 

B(t) 

 

k4 

 

k3 

 
C1(t) 

 



)()()( 21 tCtCtC += ,      (27) 

can be measured. Equation (27) is called the output equation in system theory. By taking 

the Laplace transform of (25), (26), and (27), we have 
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Solving for )(
~

1 sC and )(
~

2 sC  from (28) and (29) then substituting them into (30), we 

obtain the output/input ratio )(
~

/)(
~

sBsC  in the Laplace domain, which is the transfer 

function of the system: 
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Letting s=0 in (31) yields the DC gain of the system 
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In practice, the DC gain gdc can be readily obtained as the ratio of the total sum (i.e., 

integral) of the function C(t) over the total sum (i.e., integral) of the function B(t).  

After performing the bilinear transformation (17), an approximate discrete-time 

counterpart is obtained as 
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Taking the inverse Z-transform of (33) and using the DC gain relation (32), we have a 

time-domain model: 
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where t now takes discrete values and 
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Let )( 4314 kkKx += . The DC gain relationship (32) implies 14 xgx dc= . In order to solve for 

the three unknowns in (34), x1, x2, and x3, (34) must first be transformed into a system of 

three equations. One can choose three functions, say, U1(t), U2(t), and U3(t), to calculate 

inner products with (34) and obtain three linear equations: 
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With carefully chosen U1(t), U2(t), and U3(t), the three equations in (42) are linear 

independent and the unknowns, x1, x2, and x3, can be readily obtained by inverting a 3x3 

matrix and multiplying a 3x1 column vector: 
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Finally, the estimated kinetic parameters are obtained with the closed-form expressions 
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One has freedom to choose the functions U1(t), U2(t), and U3(t). After a few trials, we 

found that the selection of functions U1(t), U2(t), and U3(t) can affect the robustness of 

the solution, and we chose U1(t) = B(t), U2(t) = C(t), and U3(t) to be a cosine function 

whose period is the entire signal duration. 

 

 

 



III. Comments on the Theory 

III. A. Summed measurements vs. sampled measurements 

In dynamic SPECT and PET, the measurements do not correspond to sampled 

values of a continuous time-activity curve (TAC), but rather to the integrated TAC values 

over a time interval: either [t-T, T] or [0, t]. Integrated data are equivalent to first filtering 

the continuous TAC data with a boxcar kernel, then sampling this low-pass filtered TAC 

at different time instants.  

Let us consider the situation that the TAC data are integrated over the time 

interval [t-T, T]. The relationship expressed by (34) holds for continuous functions; we 

can integrate the both sides of (34) over the time interval [t-T, T], obtaining the exactly 

same expression except that C(t), C(t-T), C(t-2T), B(t), B(t-T), and B(t-2T) in (35)-(38) 

are replaced by their integrated (i.e., low-pass filtered) counterparts. Therefore, the 

proposed methodology can be applied to general function forms, which can be 

continuous-time signal, discrete-time sampled signal, signal that has been integrated over 

an arbitrary time interval.  

III. B. Extension to multi-compartment models 

In general, if we have N compartments for the tissue model, we have a system of 

N first-order differential equations (which are called state equations) to describe the 

kinetics. Let C
v

be a vector that contains all N compartments, A be an NxN matrix, D be 

an Nx1 matrix and E be a 1xN matrix. The system of differential equations can be 

expressed in a matrix form 
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The measurable activity is described by the output equation: 
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where the C(t) on the left-hand-side is a scalar. Using the Laplace transform, the system’s 

transfer function can be obtained as 
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By taking the bilinear transformation, (47) can be converted into  
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where Pi(t) consists of C(t), C(t-T), C(t-2T), …, C(t-NT), B(t), B(t-T), B(t-2T), …, B(t-

NT), i = 1, 2, …, 2N. Using the DC gain of the system 
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and a set of user-chosen functions U1(t), U2(t), …, U2N-1 (t), a system of 2N-1 

independent linear equations (similar to (42)) can be formed and the unknowns (γi) can be 

solved. The γi’s are directly related to the kinetic parameters, and the kinetic parameters 

are finally obtained.  

 

 



III. C. Consideration of the input function contamination effect 

In the above discussion, we assume that the quantity C(t) can be measured. In 

reality, the measured C(t) can be contaminated by the input function B(t). The system’s 

transfer function (31) should be revised to reflect this effect as 
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This revised transfer function has an extra s
2
 term on the nominator. We still can use the 

same procedure proposed in Section II to solve the unknowns and we have an extra 

unknown. The DC gain is modified accordingly as 
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IV. Results  
IV.A. Input function and measurement generation 

In computer simulations, the blood input functions were in the form of [6] 
ttt

AeeAeAAtAtB 321
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where A1 = 21.28, A2 = 7.71, A3 = 0.37, λ1 = 2.0 min
-1

, λ2 = 1.0 min
-1

, and λ3 = 0.1 min
-1

. 

The blood time activity curve was assumed to be noiseless and sampling intervals T were 

chosen as 1 second, 2 seconds, and 5 seconds, respectively. The simulated data 

acquisition time was 135 minutes. 

 It is important to point out that the measurement C(t) was analytically generated with a 

mathematically exact convolution formula.  Scaled Gaussian noise N(0,1) (mean=0, 

standard deviation=1) was added to the noiseless data C(t), and the noise scaling factor 

was 

)(
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where the proportional constant α = 0.0, 0.1, 0.2 and 0.4, respectively, for different noise 

levels. 

 

IV. B. One-compartment model examples 

 The compartment time-activity-curve C(t) was generated with K1 = 0.4 min
-1

 and 

k2 = 0.2 min
-1

. Typical noisy time activity curves C(t)  are shown in Figure 3 for four α 

values. In the computer simulations, 1000 runs were used for each noise level. The mean 

values and the standard deviations for the estimated kinetic parameters K1 and k2 are 

listed in Table 1. A Gaussian convolution kennel was used to convolve both B(t) and C(t) 

for low-pass filtering before parameter estimation method was applied. The computation 

times reported in Tables 1 and 2 are for 1000 noise trials, and the algorithm was coded 

and run in MATLAB®. 

 



 
 

Figure 3. [One-Compartment Model] Time-activity curves C(t) with different noise levels: upper left α = 0, 

upper right α = 0.1, lower left α = 0.2, lower right α = 0.4. The horizontal axis is time (in minutes). 

 

 

TABLE 1. Estimation Results for the One-Compartment Model Parameters K1 and k2 

Data sampling 

time T (seconds) 

Noise level α K1 (min-1) k2 (min-1) Computation 

time for 1000 

noise trials 

(seconds) 

0.0 0.40 0.20  

0.1 0.40±0.0047 0.20±0.0023 

0.2 0.40±0.0093 0.20±0.0045 

1 

0.4 0.40±0.0191 0.20±0.0093 

6 

0.0 0.40 0.20  

0.1 0.40±0.0050 0.20±0.0025 

0.2 0.40±0.0100 0.20±0.0048 

2 

0.4 0.40±0.0201 0.20±0.0099 

4 

0.0 0.40 0.20  

0.1 0.40±0.0029 0.20±0.0013 

0.2 0.40±0.0055 0.20±0.0026 

5 

0.4 0.42±0.0114 0.20±0.0053 

3 

True values 0.40 0.20  

 

 



IV. C. Two-compartment model examples 

 The compartment time-activity-curve C(t) was generated with K1 = 0.4 min
-1

, k2 = 

0.3 min
-1

, k3 = 0.2 min
-1 

and k4 = 0.1 min
-1

. Typical noisy time activity curves C(t)  are 

shown in Figure 4 for four α values. A Gaussian convolution kennel was used to 

convolve both B(t) and C(t) for low-pass filtering before parameter estimation method 

was applied.  In the computer simulations, 1000 runs were used for each noise level. The 

mean values and the standard deviations for the estimated kinetic parameters K1 ~ k4 are 

listed in Table 2. 

 

 
Figure 4. [Two-Compartment Model] Time-activity curves C(t) with different noise levels: upper left α = 0, 

upper right α = 0.1, lower left α = 0.2, lower right α = 0.4. The horizontal axis is time (in minutes). 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 2. Estimation Results for the Two-Compartment Model Parameters K1, k2 , k3, and k4 

Data 

sampling time 

T (seconds) 

Noise 

level α 

K1 (min-1) k2 (min-1) K3 (min-1) K4 (min-1) Computation 

time for 1000 

noise trials 

(seconds) 

0.0 0.40 0.30 0.20 0.10  

0.1 0.40±0.0163 0.30±0.0306 0.20±0.0179 0.10±0.0028 

0.2 0.40±0.0325 0.29±0.0592 0.18±0.0372 0.10±0.0061 

1 

0.4 0.38±0.0623 0.26±0.0993 0.13±0.0675 0.08±0.0247 

24 

0.0 0.41 0.31 0.20 0.10  

0.1 0.41±0.0306 0.31±0.0430 0.20±0.0120 0.10±0.0063 

0.2 0.41±0.0651 0.31±0.0920 0.19±0.0258 0.10±0.0165 

2 

0.4 0.39±0.1353 0.28±0.1967 0.16±0.9074 0.12±0.9076 

17 

0.0 0.41 0.31 0.20 0.10  

0.1 0.01±11.37 -0.23±15.13 0.32±4.937 -0.02±4.938 

0.2 -0.01±9.386 -0.38±13.32 0.33±1.067 0.02±0.9729 

5 

0.4 0.24±4.332 0.03±6.551 0.40±2.363 -0.01±0.6646 

12 

True values 0.40 0.30 0.20 0.10  

 

 It is observed in TABLE 2 that when the sampling interval T is 5 seconds and there is noise, the 

proposed algorithm only produces nonsense. We tried to improve the approximation accuracy of (16) by 

using two terms, that is, 
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We repeated the results in TABLE 2, obtaining TABLE 3. Unfortunately, this improved approximation (54) 

did not give us much better results that those in TABLE 2.  

 

TABLE 3. [two-term bilinear] Estimation Results for the Two-Compartment Model Parameters K1, k2 , k3, 

and k4 

Data 

sampling time 

T (seconds) 

Noise 

level α 

K1 (min-1) k2 (min-1) K3 (min-1) K4 (min-1) Computation 

time for 1000 

noise trials 

(seconds) 

0.0 0.40 0.30 0.20 0.10  

0.1 0.40±0.0156 0.30±0.0298 0.20±0.0179 0.10±0.0026 

0.2 0.40±0.0317 0.29±0.0581 0.18±0.0353 0.10±0.0055 

1 

0.4 0.39±0.0652 0.27±0.1070 0.14±0.0689 0.08±0.0235 

25 

0.0 0.41 0.31 0.20 0.10  

0.1 0.41±0.0288 0.31±0.0417 0.20±0.0115 0.10±0.0057 

0.2 0.41±0.0578 0.31±0.0819 0.19±0.0252 0.10±0.0155 

2 

0.4 0.40±0.1542 0.30±0.2488 0.11±1.105 0.16±1.100 

17 

0.0 0.39 0.29 0.20 0.10  

0.1 -0.12±14.92 -0.44±21.13 0.28±2.641 0.03±2.640 

0.2 0.47±18.46 0.31±24.99 0.17±2.053 0.13±2.031 

5 

0.4 0.26±2.659 0.10±4.716 0.39±4.146 -0.06±3.456 

13 

True values 0.40 0.30 0.20 0.10  

 

 



V. Conclusions 
 

 Time-domain curve-fitting is the current state-of-the-art in nuclear medicine 

kinetic estimation. Due to the non-linear exponential functions, this curve-fitting is 

sensitive to noise, especially for multi-compartment model parameter estimation 

problems.  The noise may make the algorithm converge to a wrong solution; therefore it 

is unreliable to use a common optimization algorithm to perform curve fitting. In this 

paper, a closed-form kinetic estimation method is proposed, attempting to provide a 

unique solution in a fast. The proposed method is based on the bilinear transformation 

that converts the Laplace-domain system transfer function into a Z-domain system 

transfer function. The purpose of this conversion is to change the derivative operator to 

the finite difference operator so that it is possible to be implemented on a computer. This 

bilinear transformation is a more accurate approximation than the simple difference. 

 Computer simulations reveal that the proposed estimation algorithm is relatively 

robust against noise for the one-compartment model. In a two-compartment model, the 

performance is rather poor when the sampling time-interval is not small enough and the 

data are corrupted with noise. Using a small sampling interval is equivalent to using a 

slow changing input function. The bolus administration should be slow and gentle.  
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